Vågteorin om ljus, som Maxwells ekvationer fångade så bra, blev det dominerande ljuset teorin på 1800-talet (överträffa Newtons korpuskulära teori, som hade misslyckats i ett antal situationer). Den första stora utmaningen för teorin kom i att förklara värmestrålning, vilket är typen av elektromagnetisk strålning släpps ut av föremål på grund av deras temperatur.
Testa termisk strålning
En apparat kan ställas in för att detektera strålningen från ett objekt som hålls vid temperaturen T1. (Eftersom en varm kropp avger strålning i alla riktningar, måste någon form av avskärmning på plats så att strålningen som undersöks är i en smal stråle.) Placera ett dispersivt medium (dvs. ett prisma) mellan kroppen och detektorn, våglängder (λ) för strålningen sprids i en vinkel (θ). Detektorn, eftersom den inte är en geometrisk punkt, mäter ett intervall delta-teta vilket motsvarar ett intervall delta-λmen i en idealisk uppsättning är detta intervall relativt litet.
Om jag representerar den totala intensiteten för fra vid alla våglängder, sedan den intensiteten över ett intervall 5
λ (mellan gränserna för λ och 5& Lamba;) är:δjag = R(λ) δλ
R(λ) är Radiancy eller intensitet per våglängdsenhet per enhet. I calculus notation, 5-värdena minskar till deras gräns på noll och ekvationen blir:
dl = R(λ) dλ
Experimentet som beskrivs ovan upptäcker dl, och därför R(λkan bestämmas för vilken önskad våglängd som helst.
Radiancy, temperatur och våglängd
Genom att genomföra experimentet för ett antal olika temperaturer, får vi ett antal radiancy vs. våglängdskurvor, som ger betydande resultat:
- Den totala intensiteten strålade över alla våglängder (dvs området under R(λ) kurva) ökar när temperaturen ökar.
Detta är verkligen intuitivt och faktiskt finner vi att om vi tar integralen av intensitetsekvationen ovan får vi ett värde som är proportionellt mot den fjärde effekten av temperaturen. Specifikt kommer proportionaliteten från Stefan's lag och bestäms av Stefan-Boltzmann konstant (sigma) i formuläret:
jag = σ T4
- Värdet på våglängden λmax vid vilken strålningsnivån når sitt maximum minskar när temperaturen ökar.
Experimenten visar att den maximala våglängden är omvänt proportionell mot temperaturen. Vi har faktiskt funnit att om du multiplicerar λmax och temperaturen, du får en konstant, i vad som kallas Weins förskjutningslag:λmax T = 2,898 x 10-3 mK
Strålning av Blackbody
Ovanstående beskrivning involverade lite fusk. Ljus reflekteras av föremål, så det beskrivna experimentet stöter på problemet med vad som faktiskt testas. För att förenkla situationen tittade forskare på a svartkropps, det vill säga ett objekt som inte reflekterar något ljus.
Tänk på en metalllåda med ett litet hål i den. Om ljuset träffar hålet kommer det in i rutan, och det finns liten chans att det hoppar ut igen. I detta fall är därför hålet, inte själva lådan, den svarta kroppen. Strålningen som upptäcks utanför hålet kommer att vara ett prov på strålningen inuti lådan, så det krävs en del analys för att förstå vad som händer inne i lådan.
Lådan är fylld med elektromagnetisk stående vågor. Om väggarna är av metall, studs strålningen runt inuti lådan med det elektriska fältet stoppande vid varje vägg, vilket skapar en nod vid varje vägg.
Antalet stående vågor med våglängder mellan λ och dλ är
N (X) d = = 8π V / X4d)
var V är lådans volym. Detta kan bevisas genom regelbunden analys av stående vågor och utvidgning till tre dimensioner.
Varje enskild våg bidrar med en energi kT till strålningen i lådan. Från klassisk termodynamik vet vi att strålningen i lådan är i termisk jämvikt med väggarna vid temperaturen T. Strålning absorberas och snabbt återges av väggarna, vilket skapar svängningar i frekvensen av strålning. Den genomsnittliga termiska kinetiska energin för en oscillerande atom är 0,5kT. Eftersom dessa är enkla harmoniska oscillatorer är den genomsnittliga kinetiska energin lika med den genomsnittliga potentiella energin, så den totala energin är kT.
Strålningen är relaterad till energitätheten (energi per enhetsvolym) u(λ) i förhållandet
R(λ) = (c / 4) u(λ)
Detta erhålls genom att bestämma mängden strålning som passerar genom ett element av ytområdet i kaviteten.
Misslyckande med klassisk fysik
u(λ) = (8π / λ4) kT
R(λ) = (8π / λ4) kT (c / 4) (känd som Rayleigh-Jeans-formel)
Uppgifterna (de tre andra kurvorna i diagrammet) visar faktiskt en maximal radiancy, och under lambdamax vid denna punkt faller radiancy av och närmar sig 0 som lambda närmar sig 0.
Detta misslyckande kallas ultraviolett katastrofoch 1900 hade det skapat allvarliga problem för klassisk fysik eftersom det ifrågasatte de grundläggande begreppen termodynamik och elektromagnetik som var inblandade i att nå den ekvationen. (Vid längre våglängder är Rayleigh-Jeans-formeln närmare de observerade data.)
Plancks teori
Max Planck föreslog att en atom endast kan absorbera eller återföra energi i separata buntar (kvanta). Om energin från dessa kvanta är proportionell mot strålningsfrekvensen, skulle energin på stora frekvenser på liknande sätt bli stor. Eftersom ingen stående våg kunde ha en energi större än kT, detta sätter ett effektivt lock på högfrekvensstrålningen och löser således den ultravioletta katastrofen.
Varje oscillator kunde emittera eller ta upp energi endast i mängder som är heltalsmultiplar av kvantatet av energi (epsilon):
E = n ε, där antalet kvanta, n = 1, 2, 3,.. .
ν
ε = h ν
h
(c / 4)(8π / λ4)((hc / λ)(1 / (ehc/X kT – 1)))
konsekvenser
Medan Planck introducerade idén om kvanta för att fixa problem i ett specifikt experiment, gick Albert Einstein vidare för att definiera den som en grundläggande egenskap hos det elektromagnetiska fältet. Planck, och de flesta fysiker, var långsamma med att acceptera denna tolkning tills det fanns överväldigande bevis för att göra det.