Använda kalkyl för att beräkna leveransens elasticitet

I introduktionsekonomikurser lärs eleverna det elasticiteter beräknas som förhållanden mellan procentändringar. Specifikt sägs de att priselasticiteten i utbudet är lika med den procentuella förändringen i kvantitet som antas dividerad med den procentuella prisförändringen. Även om detta är en användbar åtgärd, är det en tillnärmning till viss del, och den beräknar vad som (grovt) kan tänkas vara en genomsnittlig elasticitet över ett antal priser och mängder.

För att beräkna ett mer exakt mått på elasticitet vid en viss punkt på en tillgång eller efterfrågan kurva måste vi tänka på oändligt små prisförändringar och som ett resultat integrerar matematiska derivat i vår elasticitet formler. för att se hur detta görs, låt oss ta en titt på ett exempel.

Ett exempel

Anta att du får följande fråga:

Efterfrågan är Q = 100 - 3C - 4C2, där Q är mängden av den levererade varan och C är produktionskostnaden för varan. Vad är priselasticiteten i leveransen när vår kostnad per enhet är $ 2?

Vi såg att vi kan beräkna all elasticitet med formeln:

instagram viewer
  • Elasticitet hos Z med avseende på Y = (dZ / dY) * (Y / Z)

När det gäller priselasticitet på leverans är vi intresserade av elasticiteten i levererad kvantitet med avseende på våra enhetskostnader C. Således kan vi använda följande ekvation:

  • Priselasticitet på leveransen = (dQ / dC) * (C / Q)

För att använda denna ekvation måste vi ha kvantitet ensam på vänster sida, och den högra sidan vara en funktion av kostnaden. Så är fallet i vår efterfråganekvation Q = 400 - 3C - 2C2. Således differentierar vi med avseende på C och får:

  • dQ / dC = -3-4C

Så vi ersätter dQ / dC = -3-4C och Q = 400 - 3C - 2C2 i vår priselasticitet på leveransekvationen:

  • Priselasticitet på leveransen = (dQ / dC) * (C / Q)
    Priselasticitet på tillförsel = (-3-4C) * (C / (400 - 3C - 2C)2))

Vi är intresserade av att hitta vad priselasticiteten för leveransen är vid C = 2, så vi ersätter dessa i vår priselasticitet på leveransekvationen:

  • Priselasticitet på tillförsel = (-3-4C) * (C / (100 - 3C - 2C)2))
    Priselasticitet på tillförsel = (-3-8) * (2 / (100 - 6 - 8))
    Priselasticitet på tillförsel = (-11) * (2 / (100 - 6 - 8))
    Priselasticitet på leverans = (-11) * (2/86)
    Priselasticitet på leverans = -0.256

Således är vår priselasticitet på leverans -0.256. Eftersom det är mindre än 1 i absoluta termer, säger vi det varor är ersättare.

Andra priselasticitetsekvationer

  1. Använda kalkyler för att beräkna priselasticitet av efterfrågan
  2. Använda kalkyler för att beräkna inkomsternas elasticitet
  3. Använda kalkyl för att beräkna efterfrågelasticitet av efterfrågan
instagram story viewer