Exponentiella funktioner berättar historier om explosiv förändring. De två typerna av exponentiella funktioner är exponentiell tillväxt och exponentiellt förfall. Fyra variabler - procent förändring, tid, beloppet i början av tidsperioden och beloppet i slutet av tidsperioden - spela roller i exponentiella funktioner. Den här artikeln fokuserar på hur man använder ordproblem för att hitta mängden i början av tidsperioden, en.
Exponentiell tillväxt
Exponentiell tillväxt: förändringen som inträffar när ett ursprungligt belopp ökas med en jämn takt över en tidsperiod
Användningar av exponentiell tillväxt i verkliga livet:
- Värden på bostadspriserna
- Värden på investeringar
- Ökat medlemskap på en populär social nätverkssajt
Här är en exponentiell tillväxtfunktion:
y = a (1 + b)x
- y: Det slutliga beloppet som återstår under en tidsperiod
- en: Det ursprungliga beloppet
- x: Tid
- De tillväxtfaktor är (1 + b).
- Variabeln, b, är procentuell förändring i decimalform.
Syfte att hitta det ursprungliga beloppet
Om du läser den här artikeln är du förmodligen ambitiös. Sex år från och med nu, kanske du vill bedriva en grundutbildning vid Dream University. Med en prislapp på 120 000 dollar framkallar Dream University ekonomiska natträdsel. Efter sömnlösa nätter träffar du, mamma och pappa en ekonomisk planerare. Dina förälders blodblodiga ögon lyser upp när planeraren avslöjar en investering med en tillväxttakt på 8% som kan hjälpa din familj att nå målet på 120 000 dollar. Studera hårt. Om du och dina föräldrar investerar 75 620,36 dollar idag, kommer Dream University att bli din verklighet.
Hur man löser för det ursprungliga beloppet för en exponentiell funktion
Denna funktion beskriver investeringens exponentiella tillväxt:
120,000 = en(1 +.08)6
- 120 000: Slutligt belopp kvar efter 6 år
- .08: Årlig tillväxttakt
- 6: Antalet år för investeringen att växa
- a: Det initiala beloppet som din familj investerade
Ledtråd: Tack vare jämlikhetens symmetriska egenskap, 120 000 = en(1 +.08)6 är det samma som en(1 +.08)6 = 120,000. (Symmetrisk egenskap av jämlikhet: Om 10 + 5 = 15, då 15 = 10 +5.)
Om du föredrar att skriva om ekvationen med konstanten, 120 000, till höger om ekvationen, gör det.
en(1 +.08)6 = 120,000
Visningsvis ser ekvationen inte ut som en linjär ekvation (6en = $ 120 000), men det är lösbart. Hålla fast vid det!
en(1 +.08)6 = 120,000
Var försiktig: Lös inte denna exponentiella ekvation genom att dela 120 000 med 6. Det är ett frestande matte-nej.
1. Använda sig av Operationsordning att förenkla.
en(1 +.08)6 = 120,000
en(1.08)6 = 120 000 (parentes)
en(1,586874323) = 120 000 (exponent)
2. Lös genom att dela
en(1.586874323) = 120,000
en(1.586874323)/(1.586874323) = 120,000/(1.586874323)
1en = 75,620.35523
en = 75,620.35523
Det ursprungliga beloppet att investera är ungefär 75 620,36 dollar.
3. Frys - du är inte klar än. Använd ordningsfunktioner för att kontrollera ditt svar.
120,000 = en(1 +.08)6
120,000 = 75,620.35523(1 +.08)6
120,000 = 75,620.35523(1.08)6 (Parentes)
120.000 = 75.620.35523 (1.586874323) (Exponent)
120 000 = 120 000 (multiplikation)
Svar och förklaringar till frågorna
Originalark
Bonde och vänner
Använd informationen om bondens sociala nätverkssida för att besvara frågorna 1-5.
En bonde startade en social nätverkssajt, farmerandriends.org, som delar tips om trädgårdsarbete i trädgården. När farmerandriends.org gjorde det möjligt för medlemmar att lägga upp foton och videor växte webbplatsens medlemskap exponentiellt. Här är en funktion som beskriver den exponentiella tillväxten.
120,000 = en(1 + .40)6
-
Hur många tillhör boerandriends.org 6 månader efter att det möjliggjorde fotodelning och videodelning? 120 000 personer
Jämför denna funktion med den ursprungliga exponentiella tillväxtfunktionen:
120,000 = en(1 + .40)6
y = en(1 +b)x
Det ursprungliga beloppet, y, är 120 000 i den här funktionen om sociala nätverk. - Representerar denna funktion exponentiell tillväxt eller förfall? Denna funktion representerar exponentiell tillväxt av två skäl. Skäl 1: Informationsparagrafen avslöjar att "webbplatsmedlemskapet växte exponentiellt." Orsak 2: Ett positivt tecken är rätt innan b, den månatliga procentuella förändringen.
- Vad är den månatliga procentökningen eller minskningen? Den månatliga procentökningen är 40%, .40 skriven som en procent.
-
Hur många medlemmar tillhörde boerandriends.org för 6 månader sedan, precis innan fotodelning och videodelning introducerades? Cirka 15 937 medlemmar
Använd Order of Operations för att förenkla.
120,000 = en(1.40)6
120,000 = en(7.529536)
Dela upp för att lösa.
120,000/7.529536 = en(7.529536)/7.529536
15,937.23704 = 1en
15,937.23704 = en
Använd Order of Operations för att kontrollera ditt svar.
120,000 = 15,937.23704(1 + .40)6
120,000 = 15,937.23704(1.40)6
120,000 = 15,937.23704(7.529536)
120,000 = 120,000 -
Om dessa trender fortsätter, hur många medlemmar kommer att tillhöra webbplatsen 12 månader efter introduktionen av fotodelning och videodelning? Cirka 903,544 medlemmar
Anslut vad du vet om funktionen. Kom ihåg att du har den här gången en, det ursprungliga beloppet. Du löser för y, det belopp som återstår i slutet av en tidsperiod.
y = en(1 + .40)x
y = 15,937.23704(1+.40)12
Använd Order of Operations för att hitta y.
y = 15,937.23704(1.40)12
y = 15,937.23704(56.69391238)
y = 903,544.3203