Arbetsblad för 3-siffras subtraktion (en del omgruppering)

När unga studenter lär sig två- eller tresiffrig subtraktion är ett av koncepten de möter omgruppering, också känd som låna och bära, carry-over, eller kolumn matematik. Det här konceptet är viktigt att lära sig, eftersom det gör att man kan arbeta med ett stort antal när man beräknar matematiska problem för hand. Omgruppering med tre siffror kan vara särskilt utmanande för små barn eftersom de kan behöva låna från tiotals eller en kolumn. Med andra ord, de kan behöva låna och bära två gånger i ett enda problem.

Det bästa sättet att lära sig att låna och bära är genom övning, och dessa gratis utskrivbara kalkylblad ger eleverna många möjligheter att göra det.

Den här PDF-filen innehåller en trevlig blandning av problem, med vissa som kräver att studenter lånar bara en gång för några och två gånger för andra. Använd det här kalkylbladet som ett förprov. Gör tillräckligt med kopior så att varje student får sina egna. Tillkännage för eleverna att de kommer att göra en förprövning för att se vad de vet om tresiffrig subtraktion med omgruppering. Dela sedan ut kalkylbladet och ge eleverna cirka 20 minuter att slutföra problemen.

instagram viewer

Om de flesta av dina elever gav korrekta svar för minst hälften av problemen på det föregående kalkylbladet, använd detta utskrivbara för att granska tresiffrig subtraktion med omgruppering som klass. Om eleverna kämpade med föregående arbetsblad ska du först granska tvåsiffrig subtraktion med omgruppering. Innan du delar ut detta kalkylblad ska du visa eleverna hur man gör minst ett av problemen.

Till exempel är problem nr 1 682 - 426. Förklara för eleverna att du inte kan ta 6 - ringde subtrahend, det nedersta numret i ett subtraktionsproblem, från 2 - minuend eller toppnummer. Som ett resultat måste du låna från 8, lämnar 7 som minuend i tiotals kolumnen. Berätta för dina elever att de kommer att bära 1 de lånade och placerade den bredvid 2 i kolumnen - så har de nu 12 som minuend i kolumnen. Berätta för eleverna det 12 - 6 = 6, vilket är antalet de skulle placera under den horisontella linjen i kolumnen. I tiotals kolumnen har de nu 7 - 2, vilket är lika med 5. Förklara det i kolumnen hundratals 6 - 4 = 2, så svaret på problemet skulle vara 256.

Låt dem använda om eleverna kämpar manipulatives - fysiska föremål som gummibjörnar, pokerchips eller små kakor - för att hjälpa dem att lösa dessa problem. Till exempel är problem nr 2 i denna PDF 735 - 552. Använd pennies som dina manipuleringsmedel. Låt eleverna räkna fem öre, som representerar minuenden i kolumnen.

Be dem ta bort två öre, som representerar subtrahend i kolumnen. Detta kommer att ge tre, så får eleverna skriva 3 längst ner i kolumnen. Låt dem nu räkna ut tre öre, som representerar minuenden i tiotals kolumnen. Be dem ta bort fem öre. Förhoppningsvis kommer de att säga att de inte kan. Berätta för dem att de kommer att behöva låna från 7, minuenden i hundratals kolumnen, gör det 6.

De kommer sedan att bära 1 till tiotals kolumnen och sätt in den före 3, vilket gör det toppnumret 13. Förklara det 13 minus- 5 jämlikar 8. Låt eleverna skriva 8 längst ner i tiotalspelaren. Slutligen kommer de att subtrahera 5 från 6, ger 1 som svaret i kolumnen tiotals, vilket ger ett slutligt svar på problemet med 183.

För att ytterligare cementera konceptet i elevernas sinne, använd bas 10 block, manipulativa uppsättningar som hjälper dem att lära sig platsvärde och omgruppering med block och lägenheter i olika färger, som små gula eller gröna kuber (för dem), blå stavar (för tiotals) och orange lägenheter (med 100-block kvadrater). Visa eleverna med detta och följande kalkylblad hur man använder bas 10-blocken för att snabbt lösa tresiffriga subtraktionsproblem med omgruppering.

Använd det här kalkylbladet för att visa hur du använder bas 10-block. Till exempel är problem nr 1 294 - 158. Använd gröna kuber för sådana, blå staplar (som innehåller 10 block) för 10-tal och en 100-platt för hundratals plats. Låt eleverna räkna ut fyra gröna kuber som representerar minuenden i kolumnen.

Fråga dem om de kan ta åtta kvarter från fyra. När de säger nej, låt dem räkna ut nio blå (10-block) staplar, som representerar minuenden i tiotals kolumnen. Be dem låna en blå stapel från tiotals kolumnen och föra den över till kolumnen. Låt dem placera den blå stapeln framför de fyra gröna kuberna, och låt dem sedan räkna de totala kuberna i den blå stapeln och de gröna kuberna. de borde få 14, som när du subtraherar åtta ger sex.

Låt dem placera 6 längst ner i kolumnen. De har nu åtta blå staplar i tiotals kolumnen; låt eleverna ta bort fem för att ge antalet 3. Låt dem skriva 3 längst ner i tiotalspelaren. Hundratals kolumnen är lätt: 2 - 1 = 1, ger ett svar för problemet med 136.

Nu när eleverna har haft en chans att träna tresiffrig subtraktion, använd det här kalkylbladet som en läxuppgift. Berätta för eleverna att de kan använda manipuleringsmedel som de har hemma, till exempel pennies, eller - om du är modig - skicka studenter hem med bas 10-blockuppsättningar som de kan använda för att slutföra sina läxor.

Påminn eleverna att inte alla problem på kalkylbladet kommer att kräva omgruppering. Till exempel i problem nr 1, vilket är 296 - 43, berätta för dem att du kan ta 3 från 6 i kolumnen där du får numret 3 längst ner i kolumnen. Du kan också ta 4 från 9 i tiotals kolumnen, vilket ger antalet 5. Berätta för eleverna att de helt enkelt skulle släppa minuenden i hundratals kolumnen till svarsutrymmet (under den horisontella linjen) eftersom den inte har någon subtrahend, vilket ger ett slutligt svar på 253.

Använd det här utskrivbara för att gå igenom alla listade subtraktionsproblem som en gruppklassuppgift. Låt eleverna komma upp på tavlan eller smart bräda en i taget för att lösa varje problem. Har bas 10 block och andra manipuleringsmedel tillgängliga för att hjälpa dem att lösa problemen.

Detta arbetsblad innehåller flera problem som kräver ingen eller minimal omgruppering, så det ger en möjlighet att få studenter att arbeta tillsammans. Dela eleverna i grupper om fyra eller fem. Berätta för dem att de har 20 minuter att lösa problemen. Se till att varje grupp har tillgång till manipuleringsmedel, både basblock 10 och andra allmänna manipuleringsmedel, som små inslagna godisbitar. Bonus: Berätta för eleverna att den grupp som slutar problemen först (och korrekt) får äta lite av godisen

Flera av problemen i detta kalkylblad innehåller en eller flera nollor, antingen som minuend eller subtrahend. Att arbeta med noll kan ofta vara en utmaning för studenterna, men det behöver inte vara skrämmande för dem. Till exempel är det fjärde problemet 894 - 200. Påminn eleverna att valfritt antal minus noll är det numret. Så 4 - 0 är fortfarande fyra, och 9 - 0 är fortfarande nio. Problem nr 1, vilket är 890 - 454, är lite svårare eftersom noll är minuend i kolumnen. Men detta problem kräver bara enkel upplåning och bärande, som eleverna lärde sig att göra i de tidigare kalkylbladen. Ber eleverna att de måste låna för att göra problemet 1 från 9 i tiotals kolumnen och bär den siffran till kolumnen, vilket gör minuenden 10, och som resultat, 10 - 4 = 6.

Summativa tester, eller bedömningar, hjälper dig att avgöra om eleverna har lärt sig vad de förväntades lära sig eller åtminstone i vilken grad de lärde sig det. Ge detta arbetsblad till studenter som summativt test. Berätta för dem att de ska arbeta individuellt för att lösa problemen. Det är upp till dig om du vill låta eleverna använda bas 10-block och andra manipuleringsmedel. Om du ser av utvärderingsresultaten att eleverna fortfarande kämpar kan du granska tresiffrig subtraktion med omgruppering genom att låta dem upprepa några eller alla tidigare arbetsblad.

instagram story viewer